Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Mol Cell Cardiol ; 191: 12-22, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643934

RESUMEN

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.

2.
Diabetes ; 73(5): 659-670, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387045

RESUMEN

Cardiovascular disease represents the leading cause of death in people with diabetes, most notably from macrovascular diseases such as myocardial infarction or heart failure. Diabetes also increases the risk of a specific form of cardiomyopathy, referred to as diabetic cardiomyopathy (DbCM), originally defined as ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. Herein, we provide an overview on the key mediators of DbCM, with an emphasis on the role for perturbations in cardiac substrate metabolism. We discuss key mechanisms regulating metabolic dysfunction in DbCM, with additional focus on the role of metabolites as signaling molecules within the diabetic heart. Furthermore, we discuss the preclinical approaches to target these perturbations to alleviate DbCM. With several advancements in our understanding, we propose the following as a new definition for, or approach to classify, DbCM: "diastolic dysfunction in the presence of altered myocardial metabolism in a person with diabetes but absence of other known causes of cardiomyopathy and/or hypertension." However, we recognize that no definition can fully explain the complexity of why some individuals with DbCM exhibit diastolic dysfunction, whereas others develop systolic dysfunction. Due to DbCM sharing pathological features with heart failure with preserved ejection fraction (HFpEF), the latter of which is more prevalent in the population with diabetes, it is imperative to determine whether effective management of DbCM decreases HFpEF prevalence.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Hipertensión , Humanos , Cardiomiopatías Diabéticas/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico
3.
Physiol Rev ; 104(2): 727-764, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882731

RESUMEN

The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.


Asunto(s)
Resistencia a la Insulina , Metabolismo de los Lípidos , Humanos , Miocardio/metabolismo , Corazón , Ácidos Grasos/metabolismo , Antígenos CD36/metabolismo
5.
Exp Physiol ; 108(6): 874-890, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37184360

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the physiological roles of cardiomyocyte-derived tetrahydrobiopterin (BH4) in cardiac metabolism and stress response? What is the main finding and its importance? Cardiomyocyte BH4 has a physiological role in cardiac metabolism. There was a shift of substrate preference from fatty acid to glucose in hearts with targeted deletion of BH4 synthesis. The changes in fatty-acid metabolic profile were associated with a protective effect in response to ischaemia-reperfusion (IR) injury, and reduced infarct size. Manipulating fatty acid metabolism via BH4 availability could play a therapeutic role in limiting IR injury. ABSTRACT: Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide (NO) synthases in which its production of NO is crucial for cardiac function. However, non-canonical roles of BH4 have been discovered recently and the cell-specific role of cardiomyocyte BH4 in cardiac function and metabolism remains to be elucidated. Therefore, we developed a novel mouse model of cardiomyocyte BH4 deficiency, by cardiomyocyte-specific deletion of Gch1, which encodes guanosine triphosphate cyclohydrolase I, a required enzyme for de novo BH4 synthesis. Cardiomyocyte (cm)Gch1 mRNA expression and BH4 levels from cmGch1 KO mice were significantly reduced compared to Gch1flox/flox (WT) littermates. Transcriptomic analyses and protein assays revealed downregulation of genes involved in fatty acid oxidation in cmGch1 KO hearts compared with WT, accompanied by increased triacylglycerol concentration within the myocardium. Deletion of cardiomyocyte BH4 did not alter basal cardiac function. However, the recovery of left ventricle function was improved in cmGch1 KO hearts when subjected to ex vivo ischaemia-reperfusion (IR) injury, with reduced infarct size compared to WT hearts. Metabolomic analyses of cardiac tissue after IR revealed that long-chain fatty acids were increased in cmGch1 KO hearts compared to WT, whereas at 5 min reperfusion (post-35 min ischaemia) fatty acid metabolite levels were higher in WT compared to cmGch1 KO hearts. These results indicate a new role for BH4 in cardiomyocyte fatty acid metabolism, such that reduction of cardiomyocyte BH4 confers a protective effect in response to cardiac IR injury. Manipulating cardiac metabolism via BH4 could play a therapeutic role in limiting IR injury.


Asunto(s)
Miocitos Cardíacos , Daño por Reperfusión , Ratones , Animales , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Óxido Nítrico Sintasa/metabolismo , Infarto/metabolismo , Ácidos Grasos/metabolismo
6.
Front Physiol ; 14: 1122895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909239

RESUMEN

Numerous cellular proteins are post-translationally modified by addition of a lipid group to their structure, which dynamically influences the proteome by increasing hydrophobicity of proteins often impacting protein conformation, localization, stability, and binding affinity. These lipid modifications include myristoylation and palmitoylation. Palmitoylation involves a 16-carbon saturated fatty acyl chain being covalently linked to a cysteine thiol through a thioester bond. Palmitoylation is unique within this group of modifications, as the addition of the palmitoyl group is reversible and enzyme driven, rapidly affecting protein targeting, stability and subcellular trafficking. The palmitoylation reaction is catalyzed by a large family of Asp-His-His-Cys (DHHCs) motif-containing palmitoyl acyltransferases, while the reverse reaction is catalyzed by acyl-protein thioesterases (APTs), that remove the acyl chain. Palmitoyl-CoA serves an important dual purpose as it is not only a key metabolite fueling energy metabolism, but is also a substrate for this PTM. In this review, we discuss protein palmitoylation in regulating substrate metabolism, focusing on membrane transport proteins and kinases that participate in substrate uptake into the cell. We then explore the palmitoylation of mitochondrial proteins and the palmitoylation regulatory enzymes, a less explored field for potential lipid metabolic regulation.

7.
Am J Physiol Heart Circ Physiol ; 323(1): H176-H200, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35657616

RESUMEN

Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/complicaciones , Insuficiencia Cardíaca/etiología , Humanos , Hipoglucemiantes , Infarto del Miocardio/complicaciones
8.
Metabol Open ; 14: 100177, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35313531

RESUMEN

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition. It is tightly associated with an adverse metabolic phenotype (including obesity and type 2 diabetes) as well as with obstructive sleep apnoea (OSA) of which intermittent hypoxia is a critical component. Hepatic de novo lipogenesis (DNL) is a significant contributor to hepatic lipid content and the pathogenesis of NAFLD and has been proposed as a key pathway to target in the development of pharmacotherapies to treat NAFLD. Our aim is to use experimental models to investigate the impact of hypoxia on hepatic lipid metabolism independent of obesity and metabolic disease. Methods: Human and rodent studies incorporating stable isotopes and hyperinsulinaemic euglycaemic clamp studies were performed to assess the regulation of DNL and broader metabolic phenotype by intermittent hypoxia. Cell-based studies, including pharmacological and genetic manipulation of hypoxia-inducible factors (HIF), were used to examine the underlying mechanisms. Results: Hepatic DNL increased in response to acute intermittent hypoxia in humans, without alteration in glucose production or disposal. These observations were endorsed in a prolonged model of intermittent hypoxia in rodents using stable isotopic assessment of lipid metabolism. Changes in DNL were paralleled by increases in hepatic gene expression of acetyl CoA carboxylase 1 and fatty acid synthase. In human hepatoma cell lines, hypoxia increased both DNL and fatty acid uptake through HIF-1α and -2α dependent mechanisms. Conclusions: These studies provide robust evidence linking intermittent hypoxia and the regulation of DNL in both acute and sustained in vivo models of intermittent hypoxia, providing an important mechanistic link between hypoxia and NAFLD.

9.
Diabetes ; 70(11): 2518-2531, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34526367

RESUMEN

Type 2 diabetes (T2D) impairs hypoxia-inducible factor (HIF)1α activation, a master transcription factor that drives cellular adaptation to hypoxia. Reduced activation of HIF1α contributes to the impaired post-ischemic remodeling observed following myocardial infarction in T2D. Molidustat is an HIF stabilizer currently undergoing clinical trials for the treatment of renal anemia associated with chronic kidney disease; however, it may provide a route to pharmacologically activate HIF1α in the T2D heart. In human cardiomyocytes, molidustat stabilized HIF1α and downstream HIF target genes, promoting anaerobic glucose metabolism. In hypoxia, insulin resistance blunted HIF1α activation and downstream signaling, but this was reversed by molidustat. In T2D rats, oral treatment with molidustat rescued the cardiac metabolic dysfunction caused by T2D, promoting glucose metabolism and mitochondrial function, while suppressing fatty acid oxidation and lipid accumulation. This resulted in beneficial effects on post-ischemic cardiac function, with the impaired contractile recovery in T2D heart reversed by molidustat treatment. In conclusion, pharmacological HIF1α stabilization can overcome the blunted hypoxic response induced by insulin resistance. In vivo this corrected the abnormal metabolic phenotype and impaired post-ischemic recovery of the diabetic heart. Therefore, molidustat may be an effective compound to further explore the clinical translatability of HIF1α activation in the diabetic heart.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pirazoles/farmacología , Triazoles/farmacología , Adaptación Fisiológica , Anemia de Células Falciformes , Animales , Línea Celular , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metabolismo Energético , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Resistencia a la Insulina , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Oxígeno/metabolismo , Oxígeno/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Ratas
10.
Metabolites ; 11(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806953

RESUMEN

The diabetic heart is energetically and metabolically abnormal, with increased fatty acid oxidation and decreased glucose oxidation. One factor contributing to the metabolic dysfunction in diabetes may be abnormal handling of acetyl and acyl groups by the mitochondria. L-carnitine is responsible for their transfer across the mitochondrial membrane, therefore, supplementation with L-carnitine may provide a route to improve the metabolic state of the diabetic heart. The primary aim of this study was to use hyperpolarized magnetic resonance imaging (MRI) to investigate the effects of L-carnitine supplementation on the in vivo metabolism of [1-13C]pyruvate in diabetes. Male Wistar rats were injected with either vehicle or streptozotocin (55 mg/kg) to induce type-1 diabetes. Three weeks of daily i.p. treatment with either saline or L-carnitine (3 g/kg/day) was subsequently undertaken. In vivo cardiac function and metabolism were assessed with CINE and hyperpolarized MRI, respectively. L-carnitine supplementation prevented the progression of hyperglycemia, which was observed in untreated streptozotocin injected animals and led to reductions in plasma triglyceride and ß-hydroxybutyrate concentrations. Hyperpolarized MRI revealed that L-carnitine treatment elevated pyruvate dehydrogenase flux by 3-fold in the diabetic animals, potentially through increased buffering of excess acetyl-CoA units in the mitochondria. Improved functional recovery following ischemia was also observed in the L-carnitine treated diabetic animals.

11.
Sci Rep ; 11(1): 7802, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833285

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, although they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. Here, we have explored the interplay between maturation by stimulation of fatty acid oxidation and by culture in 3D. We have investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, in porous collagen-derived scaffolds and in engineered heart tissue (EHT), by measuring rates of glycolysis and glucose and fatty acid oxidation (FAO), and changes in gene expression and mitochondrial oxygen consumption. FAO was stimulated by activation of peroxisome proliferator-activated receptor alpha (PPARα), using oleate and the agonist WY-14643, which induced an increase in FAO in monolayer hiPSC-CMs. hiPSC-CMs grown in 3D on collagen-derived scaffolds showed reduced glycolysis and increased FAO compared with monolayer cells. Activation of PPARα further increased FAO in cells on collagen/elastin scaffolds but not collagen or collagen/chondroitin-4-sulphate scaffolds. In EHT, FAO was significantly higher than in monolayer cells or those on static scaffolds and could be further increased by culture with oleate and WY-14643. In conclusion, a more mature metabolic phenotype can be induced by culture in 3D and FAO can be incremented by pharmacological stimulation.


Asunto(s)
Medios de Cultivo/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
12.
Transplantation ; 105(3): 496-508, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33617201

RESUMEN

Primary graft dysfunction is an important cause of morbidity and mortality after cardiac transplantation. Donor brain stem death (BSD) is a significant contributor to donor heart dysfunction and primary graft dysfunction. There remain substantial gaps in the mechanistic understanding of peritransplant cardiac dysfunction. One of these gaps is cardiac metabolism and metabolic function. The healthy heart is an "omnivore," capable of utilizing multiple sources of nutrients to fuel its enormous energetic demand. When this fails, metabolic inflexibility leads to myocardial dysfunction. Data have hinted at metabolic disturbance in the BSD donor and subsequent heart transplantation; however, there is limited evidence demonstrating specific metabolic or mitochondrial dysfunction. This review will examine the literature surrounding cardiometabolic and mitochondrial function in the BSD donor, organ preservation, and subsequent cardiac transplantation. A more comprehensive understanding of this subject may then help to identify important cardioprotective strategies to improve the number and quality of donor hearts.


Asunto(s)
Cardiomiopatías/metabolismo , Trasplante de Corazón/efectos adversos , Mitocondrias Cardíacas/fisiología , Preservación de Órganos/métodos , Disfunción Primaria del Injerto/metabolismo , Donantes de Tejidos , Cardiomiopatías/etiología , Humanos
13.
Magn Reson Med ; 85(6): 2978-2991, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33538063

RESUMEN

PURPOSE: Phosphorus saturation-transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ-ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate ( Pi ) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ-ATP signal present. METHODS: Using a hybrid optimal-control and Shinnar-Le Roux method, a quasi-adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. RESULTS: The quasi-adiabatic pulse was insensitive to a >2.5-fold variation in B1 , producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B1 . This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi -to-ATP measurement that may explain a trend suggesting a possible imbalance. CONCLUSIONS: This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.


Asunto(s)
Adenosina Trifosfato , Miocardio , Animales , Creatina Quinasa , Espectroscopía de Resonancia Magnética , Fosfocreatina , Ratas
14.
NMR Biomed ; 34(4): e4471, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33458907

RESUMEN

The diabetic heart has a decreased ability to metabolize glucose. The anti-ischemic drug meldonium may provide a route to counteract this by reducing l-carnitine levels, resulting in improved cardiac glucose utilization. Therefore, the aim of this study was to use the novel technique of hyperpolarized magnetic resonance to investigate the in vivo effects of treatment with meldonium on cardiac metabolism and function in control and diabetic rats. Thirty-six male Wistar rats were injected either with vehicle, or with streptozotocin (55 mg/kg) to induce a model of type 1 diabetes. Daily treatment with either saline or meldonium (100 mg/kg/day) was undertaken for three weeks. in vivo cardiac function and metabolism were assessed with CINE MRI and hyperpolarized magnetic resonance respectively. Isolated perfused hearts were challenged with low-flow ischemia/reperfusion to assess the impact of meldonium on post-ischemic recovery. Meldonium had no significant effect on blood glucose concentrations or on baseline cardiac function. However, hyperpolarized magnetic resonance revealed that meldonium treatment elevated pyruvate dehydrogenase flux by 3.1-fold and 1.2-fold in diabetic and control animals, respectively, suggesting an increase in cardiac glucose oxidation. Hyperpolarized magnetic resonance further demonstrated that meldonium reduced the normalized acetylcarnitine signal by 2.1-fold in both diabetic and control animals. The increase in pyruvate dehydrogenase flux in vivo was accompanied by an improvement in post-ischemic function ex vivo, as meldonium elevated the rate pressure product by 1.3-fold and 1.5-fold in the control and diabetic animals, respectively. In conclusion, meldonium improves in vivo pyruvate dehydrogenase flux in the diabetic heart, contributing to improved cardiac recovery after ischemia.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Espectroscopía de Resonancia Magnética/métodos , Metilhidrazinas/uso terapéutico , Isquemia Miocárdica/tratamiento farmacológico , Complejo Piruvato Deshidrogenasa/fisiología , Animales , Glucosa/metabolismo , Masculino , Metabolómica , Metilhidrazinas/farmacología , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Ratas , Ratas Wistar , Estreptozocina
15.
Commun Biol ; 3(1): 692, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214680

RESUMEN

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects culminating in congestive heart failure (HF). There are currently no clinical imaging techniques or biomarkers available to detect DOX-cardiotoxicity before functional decline. Mitochondrial dysfunction is thought to be a key factor driving functional decline, though real-time metabolic fluxes have never been assessed in DOX-cardiotoxicity. Hyperpolarized magnetic resonance imaging (MRI) can assess real-time metabolic fluxes in vivo. Here we show that cardiac functional decline in a clinically relevant rat-model of DOX-HF is preceded by a change in oxidative mitochondrial carbohydrate metabolism, measured by hyperpolarized MRI. The decreased metabolic fluxes were predominantly due to mitochondrial loss and additional mitochondrial dysfunction, and not, as widely assumed hitherto, to oxidative stress. Since hyperpolarized MRI has been successfully translated into clinical trials this opens up the potential to test cancer patients receiving DOX for early signs of cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Cardiotoxicidad/diagnóstico por imagen , Doxorrubicina/toxicidad , Corazón/efectos de los fármacos , Corazón/diagnóstico por imagen , Animales , Imagen por Resonancia Magnética , Estrés Oxidativo , Ratas
16.
JCI Insight ; 5(17)2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32879143

RESUMEN

Cardiac energetic dysfunction has been reported in patients with type 2 diabetes (T2D) and is an independent predictor of mortality. Identification of the mechanisms driving mitochondrial dysfunction, and therapeutic strategies to rescue these modifications, will improve myocardial energetics in T2D. We demonstrate using 31P-magnetic resonance spectroscopy (31P-MRS) that decreased cardiac ATP and phosphocreatine (PCr) concentrations occurred before contractile dysfunction or a reduction in PCr/ATP ratio in T2D. Real-time mitochondrial ATP synthesis rates and state 3 respiration rates were similarly depressed in T2D, implicating dysfunctional mitochondrial energy production. Driving this energetic dysfunction in T2D was an increase in mitochondrial protein acetylation, and increased ex vivo acetylation was shown to proportionally decrease mitochondrial respiration rates. Treating T2D rats in vivo with the mitochondrial deacetylase SIRT3 activator honokiol reversed the hyperacetylation of mitochondrial proteins and restored mitochondrial respiration rates to control levels. Using 13C-hyperpolarized MRS, respiration with different substrates, and enzyme assays, we localized this improvement to increased glutamate dehydrogenase activity. Finally, honokiol treatment increased ATP and PCr concentrations and increased total ATP synthesis flux in the T2D heart. In conclusion, hyperacetylation drives energetic dysfunction in T2D, and reversing acetylation with the SIRT3 activator honokiol rescued myocardial and mitochondrial energetics in T2D.


Asunto(s)
Compuestos de Bifenilo/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Metabolismo Energético , Cardiopatías/tratamiento farmacológico , Lignanos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/patología , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Antiarrítmicos/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/patología , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Fosfocreatina/metabolismo , Ratas , Ratas Wistar
17.
J Lipid Atheroscler ; 9(1): 92-109, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32821724

RESUMEN

In type 2 diabetes (T2D), the leading cause of death is cardiovascular complications. One mechanism contributing to cardiac pathogenesis is alterations in metabolism, with the diabetic heart exhibiting increased fatty acid oxidation and reduced glucose utilisation. The processes classically thought to underlie this metabolic shift include the Randle cycle and changes to gene expression. More recently, alternative mechanisms have been proposed, most notably, changes in post-translational modification of mitochondrial proteins in the heart. This increased understanding of how metabolism is altered in the diabetic heart has highlighted new therapeutic targets, with an aim to improve cardiac function in T2D. This review focuses on metabolism in the healthy heart and how this is modified in T2D, providing evidence for the mechanisms underlying this shift. There will be emphasis on the current treatments for the heart in diabetes, alongside efforts for metabocentric pharmacological therapies.

18.
Diabetologia ; 63(10): 2205-2217, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32728894

RESUMEN

AIMS/HYPOTHESIS: Treatment of vascular complications of diabetes remains inadequate. We reported that muscle pericytes (MPs) from limb muscles of vascular patients with diabetes mellitus display elevated levels of oxidative stress causing a dysfunctional phenotype. Here, we investigated whether treatment with dimethyl-2-oxoglutarate (DM-2OG), a tricarboxylic acid cycle metabolite with antioxidant properties, can restore a healthy metabolic and functional phenotype. METHODS: MPs were isolated from limb muscles of diabetes patients with vascular disease (D-MPs) and from non-diabetic control participants (ND-MPs). Metabolic status was assessed in untreated and DM-2OG-treated (1 mmol/l) cells using an extracellular flux analyser and anion-exchange chromatography-mass spectrometry (IC-MS/MS). Redox status was measured using commercial kits and IC-MS/MS, with antioxidant and metabolic enzyme expression assessed by quantitative RT-PCR and western blotting. Myogenic differentiation and proliferation and pericyte-endothelial interaction were assessed as functional readouts. RESULTS: D-MPs showed mitochondrial dysfunction, suppressed glycolytic activity and reduced reactive oxygen species-buffering capacity, but no suppression of antioxidant systems when compared with ND-MP controls. DM-2OG supplementation improved redox balance and mitochondrial function, without affecting glycolysis or antioxidant systems. Nonetheless, this was not enough for treated D-MPs to regain the level of proliferation and myogenic differentiation of ND-MPs. Interestingly, DM-2OG exerted a positive effect on pericyte-endothelial cell interaction in the co-culture angiogenesis assay, independent of the diabetic status. CONCLUSIONS/INTERPRETATION: These novel findings support the concept of using DM-2OG supplementation to improve pericyte redox balance and mitochondrial function, while concurrently allowing for enhanced pericyte-endothelial crosstalk. Such effects may help to prevent or slow down vasculopathy in skeletal muscles of people with diabetes. Graphical abstract.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/farmacología , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Pericitos/efectos de los fármacos , Adulto , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Femenino , Glucólisis/efectos de los fármacos , Humanos , Isquemia/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Pericitos/metabolismo , Enfermedades Vasculares Periféricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
NMR Biomed ; 32(7): e4099, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31090979

RESUMEN

Hypoxia plays a role in many diseases and can have a wide range of effects on cardiac metabolism depending on the extent of the hypoxic insult. Noninvasive imaging methods could shed valuable light on the metabolic effects of hypoxia on the heart in vivo. Hyperpolarized carbon-13 magnetic resonance spectroscopy (HP 13 C MRS) in particular is an exciting technique for imaging metabolism that could provide such information. The aim of our work was, therefore, to establish whether hyperpolarized 13 C MRS can be used to assess the in vivo heart's metabolism of pyruvate in response to systemic acute and chronic hypoxic exposure. Groups of healthy male Wistar rats were exposed to either acute (30 minutes), 1 week or 3 weeks of hypoxia. In vivo MRS of hyperpolarized [1-13 C] pyruvate was carried out along with assessments of physiological parameters and ejection fraction. Hematocrit was elevated after 1 week and 3 weeks of hypoxia. 30 minutes of hypoxia resulted in a significant reduction in pyruvate dehydrogenase (PDH) flux, whereas 1 or 3 weeks of hypoxia resulted in a PDH flux that was not different to normoxic animals. Conversion of hyperpolarized [1-13 C] pyruvate into [1-13 C] lactate was elevated following acute hypoxia, suggestive of enhanced anaerobic glycolysis. Elevated HP pyruvate to lactate conversion was also seen at the one week timepoint, in concert with an increase in lactate dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac metabolism of pyruvate was comparable with that observed in normoxia. We have successfully visualized the effects of systemic hypoxia on cardiac metabolism of pyruvate using hyperpolarized 13 C MRS, with differences observed following 30 minutes and 1 week of hypoxia. This demonstrates the potential of in vivo hyperpolarized 13 C MRS data for assessing the cardiometabolic effects of hypoxia in disease.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Hipoxia/metabolismo , Miocardio/metabolismo , Animales , Hipoxia/sangre , Masculino , Oxígeno/sangre , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...